
M.C. JORGE JUVENAL CAMPOS FERREIRA.
Investigador Asociado.

Laboratorio Nacional de Políticas Públicas

CIDE

Introducción a regex con rebus
Periodismo de datos

Febrero, 2021

Jorge Juvenal Campos Ferreira Regex {rebus}

Introducción

Requerimientos para la sesión:

Instalar los paquetes {rebus}, {stringr} y

{htmltools}.

Jorge Juvenal Campos Ferreira Regex {rebus}

Introducción

Como vimos la clase pasada con Sebastián,
las funciones de la librería stringr funcionan
con algo llamado “patrones”.

Sin embargo… ¿qué son y cómo podemos
generar esos patrones?

Para eso, en programación contamos con
una herramienta muy poderosa conocida
como regex o expresiones regulares.

Jorge Juvenal Campos Ferreira Regex {rebus}

Expresiones regulares

Las expresiones regulares son
secuencias de caracteres para
definir un patrón de búsqueda.

Las expresiones regulares sirven tanto
para quedarnos con palabras/frases

importantes, así como para
deshacernos de ellas.

Inversión de tiempo que todo buen
analista de datos tiene que hacer.

Son la navaja suiza para trabajar con
datos de texto.

Jorge Juvenal Campos Ferreira Regex {rebus}

¿Cómo funcionan las expresiones regulares?

https://www.youtube.com/watch?v=xH7uOrHLvUg&t=329s

Jorge Juvenal Campos Ferreira Regex {rebus}

Regex

¿Cómo se ven las expresiones regulares?

Las regex son cadenas de texto que, a través de símbolos
predefinidos, nos sirven para detectar un patrón en un texto.

Jorge Juvenal Campos Ferreira Regex {rebus}

Regex

(?<![\\w\\d])Retweet(?![\\w\\d])(\\s[\\d\\.(K|M)?]+)?

¿Cómo se ven las expresiones regulares?

Las regex son cadenas de texto que, a través de símbolos
predefinidos, nos sirven para detectar un patrón en un texto.

Ejemplo:

(Regex para capturar el numero de retweets de una
base de datos en TW)

Jorge Juvenal Campos Ferreira Regex {rebus}

Regex

¿Cómo se ven las expresiones regulares?

Las regex son cadenas de texto que, a través de símbolos
predefinidos, nos sirven para detectar un patrón en un texto.

Ejemplo:

(Regex para capturar el numero de retweets de una base de datos en TW)

(?<![\\w\\d])Retweet(?![\\w\\d])(\\s[\\d\\.(K|M)?]+)?

Jorge Juvenal Campos Ferreira Regex {rebus}

Introducción Regex

Las regex son conceptos complicados (incluso para los
programadores), así que tómenlo con calma.

Jorge Juvenal Campos Ferreira Regex {rebus}

Introducción {rebus}

En R, existe una forma menos dolorosa para poder
aprender (y utilizar) estos conceptos sin tanto
sufrimiento.

La librería {rebus} nos da la facilidad de construir expresiones regulares
de manera más intuitiva, mientras vamos aprendiendo a trabajar con
las regex tradicionales.

https://www.rdocumentation.org/packages/rebus/versions/0.1-3
Documentación:

https://www.rdocumentation.org/packages/rebus/versions/0.1-3

Jorge Juvenal Campos Ferreira Regex {rebus}

Objetos pre-programados {rebus}

Ojo! 👀 Todo esto va a tener más sentido una vez que nos
pongamos a programar! Por lo que, por esto mismo,

traten de volver a esta presentación en el futuro.

Jorge Juvenal Campos Ferreira Regex {rebus}

Objetos pre-programados {rebus}

UPPER [:upper:] Letras en Mayúsculas

PUNCT [:punct:] Signo de puntuación

DOT \\. Punto

Objeto Rebus Regex Tradicional Interpretación

Valor exacto ^$ exactly()
Patrón Expresión Regular Función rebus

Captura () capture()
Este patrón o este patrón

(varios en uno) (?:a|b) or1(c(pat_1, pat_2))

Jorge Juvenal Campos Ferreira Regex {rebus}

Introducción Funciones de repetición {rebus}

Jorge Juvenal Campos Ferreira Regex {rebus}

Introducción Escapando caracteres especiales

Cuando estamos generando expresiones regulares en R, tenemos
que tener cuidado al utilizar los símbolos siguientes:

- Paréntesis: “(“ y “)”

- Corchetes: “[“ y “]”

- Gorritos: “^”

- Símbolos de Moneda “$”

- Guiones: “-“ o “_”

- Símbolo de Más: “+”

- Símbolo de interrogación: “?”

Si queremos diseñar patrones utilizando estos símbolos especiales,
tenemos que “escaparlos” primero, utilizando “\\”, por ejemplo:

Jorge Juvenal Campos Ferreira Regex {rebus}

Introducción Función char_class()

Esta función sirve para definir un conjunto de
caracteres que van a formar parte del patrón.
Por ejemplo:

En este caso, creamos un objeto en el cual el
patrón a detectar va a ser todas las vocales,
minúsculas y mayúsculas, la letra ñ y el arroba.
Abajo, podemos ver lo que captura este patrón:

Jorge Juvenal Campos Ferreira Regex {rebus}

Introducción Función %R% (pipa rebus, concatenar)

Esta función sirve para concatenar objetos rebus,
para poder armar patrones compuestos.

Ejemplo de uso:

Patrón compuesto.

Este patrón va a capturar:
“Al inicio del renglón”: “una letra” + “un dígito” + “uno o varios espacios” + “final del string”
Algo así como: A10000231

Hay que entenderlo como el “pegamento” que va a unir
múltiples objetos rebus para armar un patrón compuesto.

Funciones:

stringr::str_view(string, pattern, match)
stringr::str_view_all(string, pattern, match)

Esta función nos permite probar nuestros intentos de
expresiones regulares. “Para atrapar lo que queremos

atrapar.”

Jorge Juvenal Campos Ferreira Regex {rebus}

Objeto rebus de patrón
 de dígito o números

Atrapa a todos los números
de manera individual

Solo se visualizan
donde hay coincidencias con el patrón

Funciones _all de stringr

Jorge Juvenal Campos Ferreira Regex {rebus}

Función Efecto

str_view()

Permite revisar si el patrón que definimos
atrapa lo que queremos atrapar. Solo
remarca la primera vez que detecta el
patrón.

str_extract()
Extrae el pedazo del string en donde se
detecta el patrón indicado. Solo lo hace
con la primera ocurrencia.

str_remove()
Remueve el pedazo del string en donde se
detecta el patrón indicado. Solo lo hace
con la primera ocurrencia.

str_replace()

Reemplaza el pedazo del string en donde
se detecta por primera vez el patrón
indicado, con un reemplazo proveído por
el usuario.

Función "_all" Efecto

str_view_all()

Permite revisar si el patrón que
definimos atrapa lo que
queremos atrapar. Atrapa todas
las ocurrencias del patrón.

str_extract_all()

Extrae el pedazo del string en
donde se detecta el patrón
indicado para TODAS las
ocurrencias. Si hay más de una
genera una lista por cada string
analizado.

str_remove_all()

Remueve el pedazo del string en
donde se detecta el patrón
indicado en todas las
ocurrencias.

str_replace_all()

Reemplaza el pedazo de string
en todas las ocurrencias del
patrón a lo largo del texto.
Igualmente, acepta la opción de
introducir un vector nombrado
para asignar múltiples
reemplazos.

Jorge Juvenal Campos Ferreira Regex {rebus}

Introducción Nota para los que ya conocen las expresiones regulares.

El paquete {rebus} es una herramienta para utilizar expresiones
regulares sin aprender la sintaxis tradicional. Si, en tu caso, te sientes
más cómodo utilizando esta sintaxis, te recomiendo que la sigas
utilizando.

Ojo! Solo que, a diferencia de las expresiones regulares normales que
utilizaríamos en cualquier otro lado, en R tenemos que escaparlas con
doble backlash (\\) por ejemplo:

Texto: “Timmy y Tommy son los sobrinos del viejo Nook”

Objetivo Con rebus Con regex normal Con regex para R Resultado

Atrapar todos los
nombres propios

UPPER %R%
one_or_more(WRD)

[:upper:][\w]+ [:upper:][\\w]+

Atrapar todas las
palabras después

de Timmy y Tommy

one_or_more(WRD)
%R% SPC %R% "Nook"

[\w]+\sNook [\\w]+\\sNook

https://www.rdocumentation.org/packages/rebus/versions/0.1-3

Jorge Juvenal Campos Ferreira Regex {rebus}

Manos a la obra

A continuación vamos a llevar a cabo un ejemplo

Jorge Juvenal Campos Ferreira Regex {rebus}

Manos a la obra

1. Leemos las librerías

2. Generamos texto

3. Primer patrón!
Generamos un patrón de las palabras que empiezan con la letra “c”

Jorge Juvenal Campos Ferreira Regex {rebus}

Ejemplos

4. Resultado
Se marca en obscuro la letra c inicial.

Jorge Juvenal Campos Ferreira Regex {rebus}

Ejemplos

5. Ahora, las que terminen en “-at”

Jorge Juvenal Campos Ferreira Regex {rebus}

Ejemplos

6. Palabras que llevan un caracter, y luego llevan
una “t”

Jorge Juvenal Campos Ferreira Regex {rebus}

Ejemplos

7. Palabras de exactamente 3 caracteres.

Jorge Juvenal Campos Ferreira Regex {rebus}

Ejercicio.

Abramos RStudio y corramos el ejemplo que les envié a su
correo.

