CIDE Y DOCENCIA ECONOMICAS A.C.

|_I'| (0)
rl Laboratorio Nacional de Politicas Publicas _) CENTRO DE INVESTIGACION

Introduccion a regex con rebus

Periodismo de datos
Febrero, 2021

M.C. JORGE JUVENAL CAMPOS FERREIRA.
Investigador Asociado.

Laboratorio Nacional de Politicas Publicas
CIDE

Introduccion

Requerimientos para la sesion:

Instalar los paquetes {rebus}, {stringr} y
{htmltools}.

Jorge Juvenal Campos Ferreira Regex {rebus}

Introduccion

Como vimos la clase pasada con Sebastian,
las funciones de la libreria stringr funcionan
con algo llamado “patrones”.

str_view(string | pattern,/match = NA)

str_view_all(string | pattern.fmatch = NA)

Sin embargo... {¢qué son y como podemos
¢
generar esos patrones?

Para eso, en programacion contamos con

una herramienta muy poderosa conocida
COMO regex o expresiones regulares.

Regex {rebus}

(:) regular |
Expresiones regulares

Las expresiones regulares son
secuencias de caracteres para
definir un patron de busqueda.

Las expresiones regulares sirven tanto
para quedarnos con palabras/frases
importantes, asi como para

Inversion de tiempo que todo buen
deshacernos de ellas.

analista de datos tiene que hacer.
Son la navaja suiza para trabajar con
datos de texto.

Jorge Juvenal Campos Ferreira Regex {rebus}

¢Como funcionan las expresiones regulares?

O Platzi

Jorge Juvenal Campos Ferreira Regex {rebus}

https://www.youtube.com/watch?v=xH7uOrHLvUg&t=329s

< :: !regular |

/regex?/

. Como se ven las expresiones regulares?

Las regex son cadenas de texto que, a traves de simbolos
predefinidos, nos sirven para detectar un patron en un texto.

Jorge Juvenal Campos Ferreira Regex {rebus}

(:) regular |

=

. Como se ven las expresiones regulares?

Las regex son cadenas de texto que, a traves de simbolos
predefinidos, nos sirven para detectar un patron en un texto.

Ejemplo:
(?7<![\\w\\d])Retweet (7! [\\w\\d]) (\\s [\\d\\. (K|M)?]+)?

(Regex para capturar el numero de retweets de una
base de datos en TW)

Jorge Juvenal Campos Ferreira Regex {rebus}

< :: !regular |

/regex?/

. Como se ven las expresiones regulares?

Las regex son cadenas de texto que, a traves de simbolos
predefinidos, nos sirven para detectar un patron en un texto.

Ejemplo:
(?7<![\\w\\d])Retweet (7! [\\w\\d]) (\\s [\\d\\. (K|M)?]+)?

(Regex para capturar el numero de retweets de una base de datos en TW)

NOT SURE IF REGEX

D T q—
Nl

OR CAT WALKED ACROSS

Jorge Juvenal Campos Ferreira Regex {rebus}

(:) regular |

=

Las regex son conceptos complicados (incluso para los
programadores), asi que tomenlo con calma. ©

1 had a problem so 1 used regular
Aﬂw m&ﬂﬂi mi#}:ﬂ: sproscionsil WELCOME TO
| PR ' S5
, |- | 1
3 Now | have tws 3 2
prohiems! 2N |
REGEX HELL

A
b

~
oL

BUT IT IS NOT THIS DAY

imgflip.com

Jorge Juvenal Campos Ferreira Regex {rebus}

En R, existe una forma menos dolorosa para poder
aprender (y utilizar) estos conceptos sin tanto

sufrimiento.

La libreria {rebus} nos da la facilidad de construir expresiones regulares
de manera mas intuitiva, mientras vamos aprendiendo a trabajar con

las regex tradicionales.

rebus: Build Regqular Expressions in a Human Readable Way

Build regular expressions piece by piece using human readable code. This package is designed for interactive use.

Documentacion:
https://www.rdocumentation.org/packages/rebus/versions/0.1-3

Jorge Juvenal Campos Ferreira Regex {rebus}

https://www.rdocumentation.org/packages/rebus/versions/0.1-3

Objetos pre-programados {rebus}

Patron Expresion Regular Objeto rebus
Inicio de un string o cadena de texto A START
Final de un string S END
Cualquier caracter sencillo : ANY_CHAR
Punto literal, gorrito o signo de pesos \. *"\$ DOT, CARAT, DOLLAR

Ojo! 993 Todo esto va a tener mas sentido una vez que nos
pongamos a programar! Por lo que, por esto mismo,

traten de volver a esta presentacion en el futuro.

Jorge Juvenal Campos Ferreira Regex {rebus}

Objetos pre-programados {rebus}

Objeto Rebus Regex Tradicional Interpretacion
UPPER [:upper:] Letras en Mayusculas
PUNCT [:punct:] Signo de puntuacion

DOT \\. Punto
Patron Expresion Regular Funcion rebus
Valor exacto NG exactly()
Captura () capture()

Este patron o este patron
(varios en uno)

Jorge Juvenal Campos Ferreira Regex {rebus}

(?:alb) ori(c(pat_1, pat_2))

Funciones de repeticion {rebus}

Patron Expresion Regular Funcion rebus
Opcional ? optional()

Zero o mas * zero_or_more()

Uno o mas + one_or_more()
Entre n y m veces {n{m} repeated()

Jorge Juvenal Campos Ferreira

Regex {rebus}

Escapando caracteres especiales

Cuando estamos generando expresiones regulares en R, tenemos
que tener cuidado al utilizar los simbolos siguientes:

- Paréntesis: “(“vy “)”

- Corchetes: “[“y “]”

- Gorritos: “N”

- Simbolos de Moneda “$”
- Guiones: “-“0 “_”

- Simbolo de Mas: “+”

- Simbolo de interrogacion: “?”

Si queremos disefar patrones utilizando estos simbolos especiales,
tenemos que “escaparlos” primero, utilizando “\\”, por ejemplo:

pat <- "\\[" %R% capture(one_or_more(DGT)) %R% "\\])"

Jorge Juvenal Campos Ferreira Regex {rebus}

Funcién char_class()

Esta funcion sirve para definir un conjunto de
caracteres que van a formar parte del patron.
Por ejemplo:

Library(rebus)
c <- char_class("aei1ouAEIOUNR@")
str_view_all("Estos nin@s son mis Alumnos", pattern = c)

En este caso, creamos un objeto en el cual el
patron a detectar va a ser todas las vocales,
minusculas y mayusculas, la letra in y el arroba.
Abajo, podemos ver lo que captura este patron:

Estos nin@s son mis Alumnos

Jorge Juvenal Campos Ferreira Regex {rebus}

Funcion %R% (pipa rebus, concatenar)

Esta funcion sirve para concatenar objetos rebus,
para poder armar patrones compuestos.

Ejemplo de uso:

pat <- START %R% WRD %R% DGT %R% capture(one_or_more(SPC)) %R% END

Patron compuesto.

Este patron va a capturar:
“Al inicio del renglon”: “una letra” + “un digito” + “uno o varios espacios” + “final del string”
Algo asi como: A10000231

Hay que entenderlo como el “pegamento” que va a unir

multiples objetos rebus para armar un patrén compuesto.

Jorge Juvenal Campos Ferreira Regex {rebus}

stringr

stringr::str_view(string, pattern, match)
stringr::str_view_all(string, pattern, match

Esta funcion nos permite probar nuestros intentos de
expresiones regulares. “Para atrapar lo que queremos
atrapar.”

Solo se visualizan
donde hay coincidencias con el patron

Atrapa a todos los niimeros str view all(contact, pattern = match = TRUE)
de manera individual _____

Call me at 555-555-0191 "\ Objeto rebus de patrén
) de digito o numeros

123 Main St

(555) 555 0191

Phone: 555.555.0191 Mobile: 555.555.0192

Jorge Juvenal Campos Ferreira Regex {rebus}

Funciones _all de stringr ™

stringr
Funcion Efecto Funcion "_all" Efecto

Permite revisar si el patrén que definimos Permite revisar si el patrén que
atrapa lo que queremos atrapar. Solo definimos atrapa lo que
remarca la primera vez que detecta el queremos atrapar. Atrapa todas
patron. las ocurrencias del patron.

..

str_view() str_view_all()

Extrae el pedazo del string en
donde se detecta el patron
indicado para TODAS las
ocurrencias. Si hay mas de una

' genera unal lista por cada string
analizado.

Remueve el pedazo del string en
- donde se detecta el patrén
indicado en todas las
ocurrencias.

Reemplaza el pedazo de string

' en todas las ocurrencias del

patron a lo largo del texto.
str_replace_all() ' Igualmente, acepta la opcién de

introducir un vector nombrado

' para asignar maltiples

reemplazos.

Jorge Juvenal Campos Ferreira Regex {rebus}

Extrae el pedazo del string en donde se
str_extract() detecta el patrén indicado. Solo lo hace str_extract_all()
con la primera ocurrencia.

Remueve el pedazo del string en donde se
str_remove() detecta el patron indicado. Solo lo hace str_remove_all()
con la primera ocurrencia.

Reemplaza el pedazo del string en donde
se detecta por primera vez el patréon
indicado, con un reemplazo proveido por
el usuario.

str_replace()

Nota para los que ya conocen las expresiones regulares.

El paquete {rebus} es una herramienta para utilizar expresiones
regulares sin aprender la sintaxis tradicional. Si, en tu caso, te sientes
mas comodo utilizando esta sintaxis, te recomiendo que la sigas

utilizando.

Ojo! Solo que, a diferencia de las expresiones regulares normales que
utilizariamos en cualquier otro lado, en R tenemos que escaparlas con
doble backlash (\\) por ejemplo:

Texto: “Timmy y Tommy son los sobrinos del viejo Nook?”

Objetivo Conrebus Con regex normal Conregex paraR Resultado
Atrapar todos los UPPER %R% [e T B T L - - . oo el vieto FooH
. . . . imm ommy son los sobrinos del viejo Noo

nombres propios one_or_more(WRD) PP PP v Y ’
Atrapar todas las " r_more(WRD)

pq'abras después LInE Sl e“ g [\W]+\SNOOk [\\W]+\\SNOOk Timmy y Tommy son los sobrinos del viejo Nook

. %R% SPC %R% "Nook

de Timmyy Tommy

Jorge Juvenal Campos Ferreira Regex {rebus}

https://www.rdocumentation.org/packages/rebus/versions/0.1-3

Manos da la obra

A continuacion vamos a llevar a cabo un ejemplo

Jorge Juvenal Campos Ferreira Regex {rebus}

Manos a la obra

1. Leemos las librerias

library(rebus)
library(stringr)

2. Generamos texto

Some strings to practice with
X <= c("cat", "coat", "scotland", "tic toc")

3. Primer patron!
Generamos un patron de las palabras que empiezan con la letra “c”

Run me
str view(x, pattern = START %R% "c")

Jorge Juvenal Campos Ferreira Regex {rebus}

4. Resultado
Se marca en obscuro la letra c inicial.

Run me
str view(x, pattern = START %R% "c")

cat
coat
scotland

tic toc

Jorge Juvenal Campos Ferreira

Regex {rebus}

5. Ahora, las que terminen en “-at”

Match the strings that end with "at"”
str view(x, pattern = "at" %R% END)

cat
coat
scotland

tic toc

Jorge Juvenal Campos Ferreira Regex {rebus}

6. Palabras que llevan un caracter, y luego llevan
una “t!!

X <= c("cat", "coat", "scotland", "tic toc")

Match any character followed by a "t"
str view(x, pattern = ANY CHAR %R% "t")

cat
coat
scotland

tic toc

Jorge Juvenal Campos Ferreira Regex {rebus}

7. Palabras de exactamente 3 caracteres.

Match a string with exactly three characters
str view(x, pattern = START %R% ANY CHAR %R% ANY CHAR %R% ANY CHAR
tR%¥ END)

cat
coat
scotland

tic toc

Jorge Juvenal Campos Ferreira Regex {rebus}

GStudid

Abramos RStudio y corramos el ejemplo que les envié a su
correo.

Jorge Juvenal Campos Ferreira Regex {rebus}

