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Introduccion

Requerimientos para la sesion:

Instalar los paquetes {rebus}, {stringr}y
{htmlitools}.
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Introduccion

Como vimos la clase pasada con Sebastian,
las funciones de la libreria stringr funcionan
con algo llamado “patrones”.

str_view(string | pattern,/match = NA)

str_view_all(string | pattern.fmatch = NA)

Sin embargo... {¢qué son y como podemos
¢
generar esos patrones?

Para eso, en programacion contamos con

una herramienta muy poderosa conocida
COMO regex o expresiones regulares.
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<::2regular |
Expresiones regulares /regex?/

Las expresiones regulares son
secuencias de caracteres para
definir un patron de busqueda.

Las expresiones regulares sirven tanto
para quedarnos con palabras/frases
importantes, asi como para

Inversion de tiempo que todo buen
deshacernos de ellas.

analista de datos tiene que hacer.
Son la navaja suiza para trabajar con
datos de texto.
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¢Como funcionan las expresiones regulares?

O Platzi
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https://www.youtube.com/watch?v=xH7uOrHLvUg&t=329s

<::2regular |

/regex?/

. Como se ven las expresiones regulares?

Las regex son cadenas de texto que, a traves de simbolos
predefinidos, nos sirven para detectar un patron en un texto.
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<::2regular |

/regex?/

. Como se ven las expresiones regulares?

Las regex son cadenas de texto que, a traves de simbolos
predefinidos, nos sirven para detectar un patron en un texto.

Ejemplo:

(?<![\\wA\d])Retweet (7! [\\w\\d]) (\\s[\\d\\. (K|M)?]+)?

(Regex para capturar el numero de retweets de una base de datos en TW)
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<::2regular |

/regex?/
expressions ()

. Como se ven las expresiones regulares?

Las regex son cadenas de texto que, a traves de simbolos
predefinidos, nos sirven para detectar un patron en un texto.

Ejemplo:

(?<![\\wA\d])Retweet (7! [\\w\\d]) (\\s[\\d\\. (K|M)?]+)?

(Regex para capturar el numero de retweets de una base de datos en TW)

NOT SURE IF REGEX

OR CAT WALKEDACROSS
KEYBOARD

Jorge Juvenal Campos Ferreira Regex {rebus}



( : ) regular |
expressions ()

Las regex son conceptos complicados (incluso para los
programadores), asi que tomenlo con calma. ©

ADAY MAY COMEWHEN | LEARN j§ '"™'*™.>% 3:.;:%" regular - llME —
HOW REGEX ACTUALLY WORKS —

\ Now | have &g
’ problems!

BUT IT IS NOT THIS DAY

imgflip.com
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En R, existe una forma menos dolorosa para poder
aprender (y utilizar) estos conceptos sin tanto

sufrimiento.

La libreria {rebus} nos da la facilidad de construir expresiones regulares
de manera mas intuitiva, mientras vamos aprendiendo a trabajar con

las regex tradicionales.

rebus: Build Regular Expressions in a Human Readable Way

Build regular expressions piece by piece using human readable code. This package is designed for interactive use.

Documentacion:
https://www.rdocumentation.org/packages/rebus/versions/0.1-3
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Objetos pre-programados {rebus}

Punto literal, gorrito o signo de pesos \.\*\S

Patron Expresion Regular Objeto rebus
Inicio de un string o cadena de texto A START
Final de un string S END
Cualquier caracter sencillo ANY_CHAR

DOT, CARAT, DOLLAR
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Objetos pre-programados {rebus}

Objeto Rebus Regex Tradicional Interpretacion

UPPER [:upper:] Letras en Mayusculas

START A Ancla - Inicio del texto
END $ Ancla - Final del Texto

ANYCHAR Cualquier caracter 3
(letras o numero o puntuacion)

PUNCT [:upper:] Ancla - Final del Texto

DOT \. Punto
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Funciones de repeticion {rebus}

Patrdn Expresion Regular Funcion rebus
Opcional ? optional()
Zero o mas * zero_or_more()
Uno o mas + one_or_more()
Entre n y m veces {n{m} repeated()
Otras Funciones
Patron Expresion Regular Funcion rebus
Valor exacto NG exactly()
Captura () capture()

Este patron o este patron
(varios en uno)
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Caracteres especiales

Cuando estamos generando expresiones regulares
en R, tenemos que tener cuidado al utilizar los
simbolos siguientes:

- Paréntesis: “(“y “)”
- Corchetes: “[“ vy “]”
= Gorritos: “N”

- Simbolos de Moneda “$”
= Guiones: “-“0 “ ”

- Simbolo de Mas: “+”

- Simbolo de interrogacion: “?”

Si queremos disenar patrones utilizando estos
simbolos especiales, tenemos que “escaparlos”
primero, utilizando “\\”, por ejemplo:

pat <- ["\\["  %R% capture(one_or_more(DGT)) %R% "\\])"

Jorge Juvenal Campos Ferreira Regex {rebus}



Funcién char_class()

Esta funcion sirve para definir un conjunto de caracteres que
van a formar parte del patron. Por ejemplo:

Library(rebus)

c <- char_class("aeiouAEIOUMR@")
str_view_all("Estos nin@s son mis Alumnos", pattern = ¢)

En este caso, creamos un objeto en el cual el patron a detectar va a
ser todas las vocales, minusculas y mayusculas, la letra n y el
arroba. Abajo, podemos ver lo que captura este patron:

Estos nin@s son mis Alumnos
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Funcion %R% (pipa rebus, concatenar)

Esta funcion sirve para concatenar objetos rebus, para
poder armar patrones compuestos y mas complejos.

Ejemplo de uso:

pat <- START %R% WRD %R% DGT %R% capture(one_or_more(SPC)) %R% END

Patron compuesto.
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%
A

stringr

stringr::str_view(string, pattern, match)
stringr::str_view_all(string, pattern, match)
Esta funcion nos permite probar nuestros intentos de

expresiones regulares. “Para atrapar lo que queremos
atrapar.”

str view_all(contact, pattern = DGT , match = TRUE)

Call me at 555-555-0191

123 Main St

(555) 555 0191

Phone: 555.555.0191 Mobile: 555.555.0192
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Manhos d la obra

A continuacion vamos a llevar a cabo un ejemplo
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Manos a la obra

1. Leemos las librerias

library(rebus)
library(stringr)

2. Generamos texto

¥ Some strings to practice with

X <= c("cat", "coat", "scotland", "tic toc")

3. Primer patron!
Generamos un patron de las palabras que empiezan con la letra “c”

# Run me
str view(x, pattern = START %R% "c")
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4. Resultado
Se marca en obscuro la letra c inicial.

# Run me
str view(x, pattern = START %R% "c")

cat
coat
scotland

tic toc
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5. Ahora, las que terminen en “-at”

# Match the strings that end with "at
str view(x, pattern = "at" %R% END)

cat
coat
scotland

tic toc
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6. Palabras que llevan un caracter, y luego llevan una “t”

X <= c("cat", "coat", "scotland", "tic toc")

# Match any character followed by a "t"
str view(x, pattern = ANY CHAR %R% "t")

cat
coat
scotland

tic toc
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7. Palabras de exactamente 3 caracteres.

# Match a string with exactly three characters
str view(x, pattern = START %R%¥ ANY CHAR %R% ANY CHAR %R% ANY CHAR

$R% END)

cat
coat
scotland

tic toc
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GStudid

Abramos RStudio y corramos el ejemplo que les envié a su correo.
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