
M.C. JORGE JUVENAL CAMPOS FERREIRA.
Investigador Asociado.

Laboratorio Nacional de Políticas Públicas

CIDE

Introducción a regex con rebus
Visualización y puesta en página web

Septiembre, 2020

Jorge Juvenal Campos Ferreira Regex {rebus}

Introducción

Requerimientos para la sesión:

Instalar los paquetes {rebus}, {stringr} y
{htmltools}.

Jorge Juvenal Campos Ferreira Regex {rebus}

Introducción

Como vimos la clase pasada con Sebastián,
las funciones de la librería stringr funcionan
con algo llamado “patrones”.

Sin embargo… ¿qué son y cómo podemos
generar esos patrones?

Para eso, en programación contamos con
una herramienta muy poderosa conocida
como regex o expresiones regulares.

Jorge Juvenal Campos Ferreira Regex {rebus}

Expresiones regulares

Las expresiones regulares son
secuencias de caracteres para
definir un patrón de búsqueda.

Las expresiones regulares sirven tanto
para quedarnos con palabras/frases

importantes, así como para
deshacernos de ellas.

Inversión de +empo que todo buen
analista de datos +ene que hacer.

Son la navaja suiza para trabajar con
datos de texto.

Jorge Juvenal Campos Ferreira Regex {rebus}

¿Cómo funcionan las expresiones regulares?

https://www.youtube.com/watch?v=xH7uOrHLvUg&t=329s

Jorge Juvenal Campos Ferreira Regex {rebus}

Regex

¿Cómo se ven las expresiones regulares?

Las regex son cadenas de texto que, a través de símbolos
predefinidos, nos sirven para detectar un patrón en un texto.

Jorge Juvenal Campos Ferreira Regex {rebus}

Regex

(?<![\\w\\d])Retweet(?![\\w\\d])(\\s[\\d\\.(K|M)?]+)?

¿Cómo se ven las expresiones regulares?

Las regex son cadenas de texto que, a través de símbolos
predefinidos, nos sirven para detectar un patrón en un texto.

Ejemplo:

(Regex para capturar el numero de retweets de una base de datos en TW)

Jorge Juvenal Campos Ferreira Regex {rebus}

Regex

(?<![\\w\\d])Retweet(?![\\w\\d])(\\s[\\d\\.(K|M)?]+)?

¿Cómo se ven las expresiones regulares?

Las regex son cadenas de texto que, a través de símbolos
predefinidos, nos sirven para detectar un patrón en un texto.

Ejemplo:

(Regex para capturar el numero de retweets de una base de datos en TW)

Jorge Juvenal Campos Ferreira Regex {rebus}

Introducción Regex

Las regex son conceptos complicados (incluso para los
programadores), así que tómenlo con calma.

Jorge Juvenal Campos Ferreira Regex {rebus}

Introducción {rebus}

En R, existe una forma menos dolorosa para poder
aprender (y utilizar) estos conceptos sin tanto
sufrimiento.

La librería {rebus} nos da la facilidad de construir expresiones regulares
de manera más intuitiva, mientras vamos aprendiendo a trabajar con
las regex tradicionales.

https://www.rdocumentation.org/packages/rebus/versions/0.1-3
Documentación:

Jorge Juvenal Campos Ferreira Regex {rebus}

Objetos pre-programados {rebus}

Jorge Juvenal Campos Ferreira Regex {rebus}

Objetos pre-programados {rebus}

UPPER [:upper:] Letras en Mayúsculas

START ^ Ancla - Inicio del texto

END $ Ancla - Final del Texto

ANYCHAR . Cualquier caracter
(letras o numero o puntuación)

PUNCT [:upper:] Ancla - Final del Texto

DOT \. Punto

Objeto Rebus Regex Tradicional Interpretación

Jorge Juvenal Campos Ferreira Regex {rebus}

Introducción Funciones de repetición {rebus}

Valor exacto ^$ exactly()

Otras Funciones

Patrón Expresión Regular Función rebus

Captura () capture()
Este patrón o este patrón

(varios en uno) (?:a|b) or1()

Jorge Juvenal Campos Ferreira Regex {rebus}

Introducción Caracteres especiales

Cuando estamos generando expresiones regulares
en R, tenemos que tener cuidado al utilizar los
símbolos siguientes:

- Paréntesis: “(“ y “)”

- Corchetes: “[“ y “]”

- Gorritos: “^”

- Símbolos de Moneda “$”

- Guiones: “-“ o “_”

- Símbolo de Más: “+”

- Símbolo de interrogación: “?”

Si queremos diseñar patrones utilizando estos
símbolos especiales, tenemos que “escaparlos”
primero, utilizando “\\”, por ejemplo:

Jorge Juvenal Campos Ferreira Regex {rebus}

Introducción Función char_class()

Esta función sirve para definir un conjunto de caracteres que
van a formar parte del patrón. Por ejemplo:

En este caso, creamos un objeto en el cual el patrón a detectar va a
ser todas las vocales, minúsculas y mayúsculas, la letra ñ y el
arroba. Abajo, podemos ver lo que captura este patrón:

Jorge Juvenal Campos Ferreira Regex {rebus}

Introducción Función %R% (pipa rebus, concatenar)

Esta función sirve para concatenar objetos rebus, para
poder armar patrones compuestos y más complejos.

Ejemplo de uso:

Patrón compuesto.

Funciones:

stringr::str_view(string, pattern, match)
stringr::str_view_all(string, pattern, match)

Esta función nos permite probar nuestros intentos de
expresiones regulares. “Para atrapar lo que queremos

atrapar.”

Jorge Juvenal Campos Ferreira Regex {rebus}

Jorge Juvenal Campos Ferreira Regex {rebus}

Manos a la obra

A continuación vamos a llevar a cabo un ejemplo

Jorge Juvenal Campos Ferreira Regex {rebus}

Manos a la obra

1. Leemos las librerías

2. Generamos texto

3. Primer patrón!
Generamos un patrón de las palabras que empiezan con la letra “c”

Jorge Juvenal Campos Ferreira Regex {rebus}

Ejemplos

4. Resultado
Se marca en obscuro la letra c inicial.

Jorge Juvenal Campos Ferreira Regex {rebus}

Ejemplos

5. Ahora, las que terminen en “-at”

Jorge Juvenal Campos Ferreira Regex {rebus}

Ejemplos

6. Palabras que llevan un caracter, y luego llevan una “t”

Jorge Juvenal Campos Ferreira Regex {rebus}

Ejemplos

7. Palabras de exactamente 3 caracteres.

Jorge Juvenal Campos Ferreira Regex {rebus}

Ejercicio.

Abramos RStudio y corramos el ejemplo que les envié a su correo.

