|_I'| (0)
rl Laboratorio Nacional de Politicas Publicas _) CENTRO DE INVESTIGACION

CIDE Y DOCENCIA ECONOMICAS A.C.

Introduccion a regex con rebus

Visualizacion y puesta en pagina web
Septiembre, 2020

M.C. JORGE JUVENAL CAMPOS FERREIRA.
Investigador Asociado.

Laboratorio Nacional de Politicas Publicas
CIDE

Introduccion

Requerimientos para la sesion:

Instalar los paquetes {rebus}, {stringr}y
{htmlitools}.

Jorge Juvenal Campos Ferreira Regex {rebus}

Introduccion

Como vimos la clase pasada con Sebastian,
las funciones de la libreria stringr funcionan
con algo llamado “patrones”.

str_view(string | pattern,/match = NA)

str_view_all(string | pattern.fmatch = NA)

Sin embargo... {¢qué son y como podemos
¢
generar esos patrones?

Para eso, en programacion contamos con

una herramienta muy poderosa conocida
COMO regex o expresiones regulares.

Regex {rebus}

<::2regular |
Expresiones regulares /regex?/

Las expresiones regulares son
secuencias de caracteres para
definir un patron de busqueda.

Las expresiones regulares sirven tanto
para quedarnos con palabras/frases
importantes, asi como para

Inversion de tiempo que todo buen
deshacernos de ellas.

analista de datos tiene que hacer.
Son la navaja suiza para trabajar con
datos de texto.

Jorge Juvenal Campos Ferreira Regex {rebus}

¢Como funcionan las expresiones regulares?

O Platzi

Jorge Juvenal Campos Ferreira Regex {rebus}

https://www.youtube.com/watch?v=xH7uOrHLvUg&t=329s

<::2regular |

/regex?/

. Como se ven las expresiones regulares?

Las regex son cadenas de texto que, a traves de simbolos
predefinidos, nos sirven para detectar un patron en un texto.

Jorge Juvenal Campos Ferreira Regex {rebus}

<::2regular |

/regex?/

. Como se ven las expresiones regulares?

Las regex son cadenas de texto que, a traves de simbolos
predefinidos, nos sirven para detectar un patron en un texto.

Ejemplo:

(?<![\\wA\d])Retweet (7! [\\w\\d]) (\\s[\\d\\. (K|M)?]+)?

(Regex para capturar el numero de retweets de una base de datos en TW)

Jorge Juvenal Campos Ferreira Regex {rebus}

<::2regular |

/regex?/
expressions ()

. Como se ven las expresiones regulares?

Las regex son cadenas de texto que, a traves de simbolos
predefinidos, nos sirven para detectar un patron en un texto.

Ejemplo:

(?<![\\wA\d])Retweet (7! [\\w\\d]) (\\s[\\d\\. (K|M)?]+)?

(Regex para capturar el numero de retweets de una base de datos en TW)

NOT SURE IF REGEX

OR CAT WALKEDACROSS
KEYBOARD

Jorge Juvenal Campos Ferreira Regex {rebus}

(:) regular |
expressions ()

Las regex son conceptos complicados (incluso para los
programadores), asi que tomenlo con calma. ©

ADAY MAY COMEWHEN | LEARN j§ '"™'*™.>% 3:.;:%" regular - llME —
HOW REGEX ACTUALLY WORKS —

\ Now | have &g
’ problems!

BUT IT IS NOT THIS DAY

imgflip.com

Regex {rebus}

En R, existe una forma menos dolorosa para poder
aprender (y utilizar) estos conceptos sin tanto

sufrimiento.

La libreria {rebus} nos da la facilidad de construir expresiones regulares
de manera mas intuitiva, mientras vamos aprendiendo a trabajar con

las regex tradicionales.

rebus: Build Regular Expressions in a Human Readable Way

Build regular expressions piece by piece using human readable code. This package is designed for interactive use.

Documentacion:
https://www.rdocumentation.org/packages/rebus/versions/0.1-3

Jorge Juvenal Campos Ferreira Regex {rebus}

Objetos pre-programados {rebus}

Punto literal, gorrito o signo de pesos \.*\S

Patron Expresion Regular Objeto rebus
Inicio de un string o cadena de texto A START
Final de un string S END
Cualquier caracter sencillo ANY_CHAR

DOT, CARAT, DOLLAR

Jorge Juvenal Campos Ferreira

Regex {rebus}

Objetos pre-programados {rebus}

Objeto Rebus Regex Tradicional Interpretacion

UPPER [:upper:] Letras en Mayusculas

START A Ancla - Inicio del texto
END $ Ancla - Final del Texto

ANYCHAR Cualquier caracter 3
(letras o numero o puntuacion)

PUNCT [:upper:] Ancla - Final del Texto

DOT \. Punto

Jorge Juvenal Campos Ferreira Regex {rebus}

Funciones de repeticion {rebus}

Patrdn Expresion Regular Funcion rebus
Opcional ? optional()
Zero o mas * zero_or_more()
Uno o mas + one_or_more()
Entre n y m veces {n{m} repeated()
Otras Funciones
Patron Expresion Regular Funcion rebus
Valor exacto NG exactly()
Captura () capture()

Este patron o este patron
(varios en uno)

Jorge Juvenal Campos Ferreira Regex {rebus}

(?:a|b) ori()

Caracteres especiales

Cuando estamos generando expresiones regulares
en R, tenemos que tener cuidado al utilizar los
simbolos siguientes:

- Paréntesis: “(“y “)”
- Corchetes: “[“ vy “]”
= Gorritos: “N”

- Simbolos de Moneda “$”
= Guiones: “-“0 “ ”

- Simbolo de Mas: “+”

- Simbolo de interrogacion: “?”

Si queremos disenar patrones utilizando estos
simbolos especiales, tenemos que “escaparlos”
primero, utilizando “\\”, por ejemplo:

pat <- ["\\[" %R% capture(one_or_more(DGT)) %R% "\\])"

Jorge Juvenal Campos Ferreira Regex {rebus}

Funcién char_class()

Esta funcion sirve para definir un conjunto de caracteres que
van a formar parte del patron. Por ejemplo:

Library(rebus)

c <- char_class("aeiouAEIOUMR@")
str_view_all("Estos nin@s son mis Alumnos", pattern = ¢)

En este caso, creamos un objeto en el cual el patron a detectar va a
ser todas las vocales, minusculas y mayusculas, la letra n y el
arroba. Abajo, podemos ver lo que captura este patron:

Estos nin@s son mis Alumnos

Jorge Juvenal Campos Ferreira Regex {rebus}

Funcion %R% (pipa rebus, concatenar)

Esta funcion sirve para concatenar objetos rebus, para
poder armar patrones compuestos y mas complejos.

Ejemplo de uso:

pat <- START %R% WRD %R% DGT %R% capture(one_or_more(SPC)) %R% END

Patron compuesto.

Jorge Juvenal Campos Ferreira Regex {rebus}

%
A

stringr

stringr::str_view(string, pattern, match)
stringr::str_view_all(string, pattern, match)
Esta funcion nos permite probar nuestros intentos de

expresiones regulares. “Para atrapar lo que queremos
atrapar.”

str view_all(contact, pattern = DGT , match = TRUE)

Call me at 555-555-0191

123 Main St

(555) 555 0191

Phone: 555.555.0191 Mobile: 555.555.0192

Jorge Juvenal Campos Ferreira Regex {rebus}

Manhos d la obra

A continuacion vamos a llevar a cabo un ejemplo

Jorge Juvenal Campos Ferreira Regex {rebus}

Manos a la obra

1. Leemos las librerias

library(rebus)
library(stringr)

2. Generamos texto

¥ Some strings to practice with

X <= c("cat", "coat", "scotland", "tic toc")

3. Primer patron!
Generamos un patron de las palabras que empiezan con la letra “c”

Run me
str view(x, pattern = START %R% "c")

Jorge Juvenal Campos Ferreira Regex {rebus}

4. Resultado
Se marca en obscuro la letra c inicial.

Run me
str view(x, pattern = START %R% "c")

cat
coat
scotland

tic toc

Jorge Juvenal Campos Ferreira Regex {rebus}

5. Ahora, las que terminen en “-at”

Match the strings that end with "at
str view(x, pattern = "at" %R% END)

cat
coat
scotland

tic toc

Jorge Juvenal Campos Ferreira

Regex {rebus}

6. Palabras que llevan un caracter, y luego llevan una “t”

X <= c("cat", "coat", "scotland", "tic toc")

Match any character followed by a "t"
str view(x, pattern = ANY CHAR %R% "t")

cat
coat
scotland

tic toc

Jorge Juvenal Campos Ferreira Regex {rebus}

7. Palabras de exactamente 3 caracteres.

Match a string with exactly three characters
str view(x, pattern = START %R%¥ ANY CHAR %R% ANY CHAR %R% ANY CHAR

$R% END)

cat
coat
scotland

tic toc

Jorge Juvenal Campos Ferreira Regex {rebus}

GStudid

Abramos RStudio y corramos el ejemplo que les envié a su correo.

Jorge Juvenal Campos Ferreira Regex {rebus}

